Banach-stone Theorems for Vector Valued Functions on Completely Regular Spaces

نویسنده

  • LEI LI
چکیده

We obtain several Banach-Stone type theorems for vector-valued functions in this paper. Let X,Y be realcompact or metric spaces, E,F locally convex spaces, and φ a bijective linear map from C(X,E) onto C(Y, F ). If φ preserves zero set containments, i.e., z(f) ⊆ z(g)⇐⇒ z(φ(f)) ⊆ z(φ(g)), ∀ f, g ∈ C(X,E), then X is homeomorphic to Y , and φ is a weighted composition operator. The above conclusion also holds if we assume a seemingly weaker condition that φ preserves nonvanishing functions, i.e., z(f) = ∅ ⇐⇒ z(φf) = ∅, ∀ f ∈ C(X,E). These two results are special cases of the theorems in a very general setting in this paper, covering bounded continuous vector-valued functions on general completely regular spaces, and uniformly continuous vector-valued functions on metric spaces. Our results extend and generalize many recent ones, while our arguments are not usually seen in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realcompactness and Banach-Stone theorems

For realcompact spaces X and Y we give a complete description of the linear biseparating maps between spaces of vector-valued continuous functions on X and Y , where special attention is paid to spaces of vector-valued bounded continuous functions. These results are applied to describe the linear isometries between spaces of vector-valued bounded continuous and uniformly continuous functions.

متن کامل

Some Properties of Reproducing Kernel Banach and Hilbert Spaces

This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...

متن کامل

Banach-stone Theorems for Maps Preserving Common Zeros

Let X and Y be completely regular spaces and E and F be Hausdorff topological vector spaces. We call a linear map T from a subspace of C(X, E) into C(Y, F ) a Banach-Stone map if it has the form Tf(y) = Sy(f(h(y)) for a family of linear operators Sy : E → F , y ∈ Y , and a function h : Y → X. In this paper, we consider maps having the property: (Z) ∩ki=1 Z(fi) 6= ∅ ⇐⇒ ∩ k i=1Z(Tfi) 6= ∅, where ...

متن کامل

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...

متن کامل

PPF dependent fixed point theorems for multi-valued mappings in Banach spaces

‎We prove the existence of PPF dependent coincidence points for a pair of single-valued and multi-valued mappings satisfying generalized contractive conditions in Banach spaces‎. ‎Furthermore, the PPF dependent fixed point and PPF dependent common fixed point theorems for multi-valued mappings are proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011